
VOC CWEB OUTPUT 1

Voc
A vocal tract physical model implementation.

By Paul Batchelor
Git Hash: 35b38ac3f7f92be685731c11d4c8d071220aa723

2 CWEB OUTPUT VOC

Introduction
The following document describes Voc, an implementation of a vocal tract physical model.

Motivations and Goals
The human voice is a powerful tool for any composer, second only to silence. Even an approximation of

the voice can tap into the entire range of human emotion. This is why the wind howls, floorboards moan, or
R2D2 pouts. For computer musicians and sound designers alike, creating sonic elements with vocal qualities
can give cold digital sounds a human-like relatable quality; an excellent tool for engaging an audience.
The goal of Voc is to provide a low level model for producing utterances and phonemes. It will neither

attempt to sing or talk, but it will babble and chatter. A program which is closely aligned with Voc’s scope
is Neil Thapen’s web application Pink Trombone. [pinktrombone] In this program, vocal phonemes are
generated through directly manipulating a virtual vocal tract in continuous time.

Literate Programming
As an experiment, the author has decided to use literate programming for this project. Literate program-

ming, created by Donald Knuth [knuth1992literate], is the concept of melting documentation and code
together. What you are reading is also a program!
The biggest advantage of using literate programming for this project is the ability to use mathemat-

ical notation to describe concepts that are implemented. The C-language does not lend itself well for
comprehensibility when it comes to DSP, even with comments. Nobody ever learned about DSP from C
code alone! A very successful example of literate programming is the book Physically Based Rendering
[pharr2016physically], which is both a textbook and software implementation of a physically accurate ray
tracer.
The underlying technology used here is CWEB[knuth1994cweb], the definitive literate programming tool

developed by Donald Knuth, with some minor macro adjustments for formatting.

§1 VOC OVERVIEW 3

Overview (1)

In a literate program, it is customary (and somewhat mandatory) to provide an ”overview” section. This
section serves as the entry point in generating the C amalgamation file voc .c. Complying with the constraints
of CWEB, the corresponding sections will appear at the bottom of this section.

The Core Voc Components
⟨Headers 3 ⟩ is the header section of the C file (not be confused with the separate header file ⟨ voc.h 66 ⟩.

This is where all the system includes, macros, global data, and structs are declared.
⟨The Glottis 33 ⟩ is the component of Voc concerned with producing the glottal excitation signal.
⟨The Vocal Tract 46 ⟩ is implementation of the physical waveguide of the vocal tract.
⟨Top Level Functions 12 ⟩ is the section consisting of all public functions for controlling Voc, from instan-

tiation to parametric control.

Supplementary Files
In addition to the main C amalgamation, there are a few other files that this literate program generates:
⟨ debug.c 68 ⟩ is the debug utility used extensively through out the development of Voc, used to debug

and test out features.
⟨ voc.h 66 ⟩ is the user-facing header file that goes along with the C amalgamation. Anyone wishing to

use this program will need this header file along with the C file.
⟨ plot.c 69 ⟩ is a program that generates dat files, which can then be fed into gnuplot for plotting. It is

used to generate the plots you see in this document.
⟨ ugen.c 70 ⟩ provides an implementation of Voc as a Sporth unit generator, offering 5 dimensions of

control. In addition the main Sporth plugin, there are also smaller unit generators implementing portions of
Voc, such as the vocal tract filter.
voc.lua (not generated but included with the source code) contains metadata needed to implement Voc

as a Soundpipe module.
⟨ ex_voc.c 79 ⟩ Is a small C program that uses Voc, written in the style of a classic Soundpipe example.
⟨ t_voc.c 80 ⟩ Is a small C program written for the Soundpipe testing utility.
⟨ p_voc.c 81 ⟩ Is a small C program written for the Soundpipe perfomance measurement utility.

⟨Headers 3 ⟩
⟨The Glottis 33 ⟩
⟨The Vocal Tract 46 ⟩
⟨Top Level Functions 12 ⟩

4 HEADER INCLUSION, STRUCTS, AND MACROS VOC §2

Header Inclusion, Structs, and Macros (2)

3.

Header of File
The header section consists of header inclusion, and definition of C-structs. The system-wide header

files include stdlib .h for things like malloc(). Standard math library functions from math .h are used.
Soundpipe/Sporth specific header files are soundpipe .h and sporth .h. It should be noted that due to the
implementation of Sporth, the Soundpipe header file must be included before the Sporth header file.
ANSI C doesn’t have the constant M_PI, so it has to be explicitly defined.
Both MIN and MAX macros are defined.
The header file string .h is included so that memset can be used to zero arrays.
There is exactly one local header file called voc .h, which is generated by CTANGLE. For more information

about this header file, see ⟨ voc.h 66 ⟩
The macro MAX_TRANSIENTS is the maximum number of transients at a given time.

⟨Headers 3 ⟩ ≡
#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "soundpipe.h"

#ifndef M_PI

#define M_PI 3.14159265358979323846
#endif
#include "voc.h"

#ifndef MIN

#define MIN(A,B) ((A) < (B) ? (A) : (B))
#endif
#ifndef MAX

#define MAX(A,B) ((A) > (B) ? (A) : (B))
#endif
#define EPSILON 1.0 · 10−38

#define MAX_TRANSIENTS 4
⟨Data Structures and C Structs 4 ⟩

This code is cited in section 1.

This code is used in section 1.

4.

Structs
This subsection contains all the data structs needed by Voc.

⟨Data Structures and C Structs 4 ⟩ ≡
⟨Glottis Data Structure 6 ⟩
⟨Transient Data 7 ⟩
⟨Tract Data 10 ⟩
⟨Utilities 11 ⟩
⟨Voc Main Data Struct 5 ⟩

This code is used in section 3.

§5 VOC HEADER INCLUSION, STRUCTS, AND MACROS 5

5. The top-most data structure is sp voc , designed to be an opaque struct containing all the variables
needed for Voc to work. Like all Soundpipe modules, this struct has the prefix ”sp”.

⟨Voc Main Data Struct 5 ⟩ ≡
struct sp voc {
glottis glot ; /∗The Glottis ∗/
tract tr ; /∗The Vocal Tract ∗/
SPFLOAT buf [512];

int counter ;
};

This code is used in section 4.

6 HEADER INCLUSION, STRUCTS, AND MACROS VOC §6

6. The glottis data structure contains all the variables used by the glottis. See ⟨The Glottis 33 ⟩ to see the
implementation of the glottal sound source.
• enable is the on/off state of the glottis
• freq is the frequency
• tenseness is the tenseness of the glottis (more or less looks like a cross fade between voiced and unvoiced
sound). It is a value in the range [0, 1].

• intensity is an internal value used for applying attack and release on enable transitions
• attack time is the time in seconds to reach full amplitude following glottis on
• release time is the time in seconds to reach 0 amplitude following glottis off
• Rd
• waveform length provides the period length (in seconds) of the fundamental frequency, in seconds.
• The waveform position is kept track of in time in waveform , in seconds.
• alpha
• E0

• epsilon
• shift
• delta
• Te
• omega
• T

⟨Glottis Data Structure 6 ⟩ ≡
typedef struct {
int enable ;

SPFLOAT freq ;
SPFLOAT tenseness ;
SPFLOAT intensity ;
SPFLOAT attack time ;
SPFLOAT release time ;
SPFLOAT Rd ;
SPFLOAT waveform length ;
SPFLOAT time in waveform ;
SPFLOAT alpha ;
SPFLOAT E0;
SPFLOAT epsilon ;
SPFLOAT shift ;
SPFLOAT delta ;
SPFLOAT Te ;
SPFLOAT omega ;
SPFLOAT T ;

} glottis;

This code is used in section 4.

7.

⟨Transient Data 7 ⟩ ≡
⟨A Single Transient 8 ⟩
⟨The Transient Pool 9 ⟩

This code is used in section 4.

§8 VOC HEADER INCLUSION, STRUCTS, AND MACROS 7

8. This data struct outlines the data for a single transient. A transient will act as a single entry in a linked
list implementation, so there exists a next pointer along with the SPFLOAT parameters.

⟨A Single Transient 8 ⟩ ≡
typedef struct transient {
int position ;

SPFLOAT time alive ;
SPFLOAT lifetime ;
SPFLOAT strength ;
SPFLOAT exponent ;

char is free ;
unsigned int id ;
struct transient ∗next ;

} transient;

This code is used in section 7.

9. A pre-allocated set of transients and other parameters are used in what will be known as a transient
pool. A memory pool is an ideal choice for realtime systems instead of dynamic memory. Calls to malloc
are discouraged because it adds performance overhead and possible blocking behavior, and there is a greater
chance of memory leaks or segfaults if not handled properly.

⟨The Transient Pool 9 ⟩ ≡
typedef struct {
transient pool [MAX_TRANSIENTS];
transient ∗root ;
int size ;
int next free ;

} transient pool;

This code is used in section 7.

8 HEADER INCLUSION, STRUCTS, AND MACROS VOC §10

10. The Tract C struct contains all the data needed for the vocal tract filter.

⟨Tract Data 10 ⟩ ≡
typedef struct {
int n; n is the size, set to 44.

SPFLOAT diameter [44];
SPFLOAT rest diameter [44];
SPFLOAT target diameter [44];
SPFLOATR[44]; component going right
SPFLOAT L[44]; component going left
SPFLOAT reflection [45];
SPFLOAT new reflection [45];
SPFLOAT junction outL[45];
SPFLOAT junction outR [45];
SPFLOATA[44];

int nose length ; The original code here has it at floor(28 ∗ n/44), and since n=44, it should be 28.
int nose start ; n− nose length+ 1, or 17
tip start is a constant set to 32
int tip start ;

SPFLOAT noseL[28];
SPFLOAT noseR [28];
SPFLOAT nose junc outL[29];
SPFLOAT nose junc outR [29];
SPFLOAT nose reflection [29];
SPFLOAT nose diameter [28];
SPFLOAT noseA[28];
SPFLOAT reflection left ;
SPFLOAT reflection right ;
SPFLOAT reflection nose ;
SPFLOAT new reflection left ;
SPFLOAT new reflection right ;
SPFLOAT new reflection nose ;
SPFLOAT velum target ;
SPFLOAT glottal reflection ;
SPFLOAT lip reflection ;

int last obstruction ;

SPFLOAT fade ;
SPFLOATmovement speed ;
15 cm/s SPFLOAT lip output ;
SPFLOAT nose output ;
SPFLOAT block time ;

transient pool tpool ;

SPFLOAT T ;
} tract;

This code is used in section 4.

§11 VOC HEADER INCLUSION, STRUCTS, AND MACROS 9

11.

⟨Utilities 11 ⟩ ≡
static SPFLOATmove towards (SPFLOATcurrent , SPFLOATtarget , SPFLOATamt up , SPFLOATamt down)
{
SPFLOATtmp ;
if (current < target) {
tmp = current + amt up ;
return MIN(tmp , target);

}
else {
tmp = current − amt down ;
return MAX(tmp , target);

}
}

This code is used in section 4.

10 TOP-LEVEL FUNCTIONS VOC §12

Top-level Functions (12)

Broadly speaking, the top-level functions are in charge of computing samples for the DSP inner-loop before,
after, and during runtime. They get their name from the fact that they are the top level of abstraction in the
program. These are the functions that get called in the Sporth Unit Generator implementation ⟨ ugen.c 70 ⟩.
⟨Top Level Functions 12 ⟩ ≡

⟨Voc Create 13 ⟩
⟨Voc Destroy 14 ⟩
⟨Voc Initialization 15 ⟩
⟨Voc Compute 16 ⟩
⟨Voc Tract Compute 17 ⟩
⟨Voc Set Frequency 18 ⟩
⟨Voc Get Frequency 19 ⟩
⟨Voc Get Tract Diameters 20 ⟩
⟨Voc Get Current Tract Diameters 21 ⟩
⟨Voc Get Tract Size 22 ⟩
⟨Voc Get Nose Diameters 23 ⟩
⟨Voc Get Nose Size 24 ⟩
⟨Voc Set Diameters 25 ⟩
⟨Voc Set Tongue Shape 26 ⟩
⟨Voc Get Counter 27 ⟩
⟨Voc Set Glottis Enable 28 ⟩
⟨Voc Set Tenseness 29 ⟩
⟨Voc Get Tenseness 30 ⟩
⟨Voc Set Velum 31 ⟩
⟨Voc Get Velum 32 ⟩

This code is cited in sections 1 and 68.

This code is used in section 1.

13. In the function sp voc create , an instance of Voc is created via malloc .

⟨Voc Create 13 ⟩ ≡
int sp voc create (sp voc ∗∗voc)
{
∗voc = malloc(sizeof (sp voc));
return SP_OK;

}
This code is cited in sections 52 and 71.

This code is used in section 12.

14. As a counterpart to sp voc compute , sp voc destroy frees all data previous allocated.

⟨Voc Destroy 14 ⟩ ≡
int sp voc destroy (sp voc ∗∗voc)
{
free (∗voc);
return SP_OK;

}
This code is cited in section 74.

This code is used in section 12.

§15 VOC TOP-LEVEL FUNCTIONS 11

15. After data has been allocated with sp voc create , it must be initialized with sp voc init .

⟨Voc Initialization 15 ⟩ ≡
int sp voc init (sp data ∗ sp , sp voc ∗voc)
{
glottis init (&voc⃗ glot , sp⃗ sr); /∗ initialize glottis ∗/
tract init (sp ,&voc⃗ tr); /∗ initialize vocal tract ∗/
voc⃗ counter = 0;
return SP_OK;

}
This code is cited in section 72.

This code is used in section 12.

16. The function sp voc compute is called during runtime to generate audio. This computation function
will generate a single sample of audio and store it in the SPFLOAT pointer ∗out .
⟨Voc Compute 16 ⟩ ≡

int sp voc compute (sp data ∗ sp , sp voc ∗voc , SPFLOAT ∗ out)
{
SPFLOATvocal output , glot ;
SPFLOATlambda1 , lambda2 ;

int i;

if (voc⃗ counter ≡ 0) {
glottis update (&voc⃗ glot , voc⃗ tr .block time);
tract reshape (&voc⃗ tr);
tract calculate reflections (&voc⃗ tr);
for (i = 0; i < 512; i++) {
vocal output = 0;
lambda1 = (SPFLOAT)i/512;
lambda2 = (SPFLOAT)(i+ 0.5)/512;
glot = glottis compute (sp ,&voc⃗ glot , lambda1);
tract compute (sp ,&voc⃗ tr , glot , lambda1);
vocal output += voc⃗ tr .lip output + voc⃗ tr .nose output ;
tract compute (sp ,&voc⃗ tr , glot , lambda2);
vocal output += voc⃗ tr .lip output + voc⃗ tr .nose output ;
voc⃗ buf [i] = vocal output ∗ 0.125;

}
}
∗out = voc⃗ buf [voc⃗ counter];
voc⃗ counter = (voc⃗ counter + 1) % 512;
return SP_OK;

}
This code is cited in sections 17, 27, and 73.

This code is used in section 12.

12 TOP-LEVEL FUNCTIONS VOC §17

17. The function sp voc compute tract computes the vocal tract component of Voc separately from the
glottis. This provides the ability to use any input signal as an glottal excitation, turning the model into a
formant filter. Compared to the main implementation in ⟨Voc Compute 16 ⟩, this function does not have
the 512 sample delay.

⟨Voc Tract Compute 17 ⟩ ≡
int sp voc tract compute (sp data ∗ sp , sp voc ∗voc , SPFLOAT ∗ in , SPFLOAT ∗ out)
{
SPFLOATvocal output ;
SPFLOATlambda1 , lambda2 ;
if (voc⃗ counter ≡ 0) {
tract reshape (&voc⃗ tr);
tract calculate reflections (&voc⃗ tr);

}
vocal output = 0;
lambda1 = (SPFLOAT)voc⃗ counter /512;
lambda2 = (SPFLOAT)(voc⃗ counter + 0.5)/512;
tract compute (sp ,&voc⃗ tr , ∗in , lambda1);
vocal output += voc⃗ tr .lip output + voc⃗ tr .nose output ;
tract compute (sp ,&voc⃗ tr , ∗in , lambda2);
vocal output += voc⃗ tr .lip output + voc⃗ tr .nose output ;
∗out = vocal output ∗ 0.125;
voc⃗ counter = (voc⃗ counter + 1) % 512;
return SP_OK;

}
This code is used in section 12.

18. The function sp voc set frequency sets the fundamental frequency for the glottal wave.

⟨Voc Set Frequency 18 ⟩ ≡
void sp voc set frequency (sp voc ∗voc , SPFLOATfreq)
{
voc⃗ glot .freq = freq ;

}
This code is used in section 12.

19. The function sp voc get frequency ptr returns a pointer to the variable holding the frequency. This
allows values to be set and read directly without. The use of a helper function. This function was notably
created for use in a demo using the GUI library Nuklear.

⟨Voc Get Frequency 19 ⟩ ≡
SPFLOAT ∗ sp voc get frequency ptr (sp voc ∗voc)
{
return &voc⃗ glot .freq ;

}
This code is used in section 12.

§20 VOC TOP-LEVEL FUNCTIONS 13

20. This getter function returns the cylindrical diameters representing tract.

⟨Voc Get Tract Diameters 20 ⟩ ≡
SPFLOAT ∗ sp voc get tract diameters (sp voc ∗voc)
{
return voc⃗ tr .target diameter ;

}
This code is cited in section 21.

This code is used in section 12.

21. Similar to sp voc get tract diameters in ⟨Voc Get Tract Diameters 20 ⟩, the function sp voc get current tract diameters
returns the diameters of the tract. The difference is that this function returns the actual slewed diameters
used in ⟨Reshape Vocal Tract 60 ⟩, rather than the target diameters.

⟨Voc Get Current Tract Diameters 21 ⟩ ≡
SPFLOAT ∗ sp voc get current tract diameters (sp voc ∗voc)
{
return voc⃗ tr .diameter ;

}
This code is used in section 12.

22. This getter function returns the size of the vocal tract.

⟨Voc Get Tract Size 22 ⟩ ≡
int sp voc get tract size (sp voc ∗voc)
{
return voc⃗ tr .n;

}
This code is used in section 12.

23. This function returns the cylindrical diameters of the nasal cavity.

⟨Voc Get Nose Diameters 23 ⟩ ≡
SPFLOAT ∗ sp voc get nose diameters (sp voc ∗voc)
{
return voc⃗ tr .nose diameter ;

}
This code is used in section 12.

24. This function returns the nose size.

⟨Voc Get Nose Size 24 ⟩ ≡
int sp voc get nose size (sp voc ∗voc)
{
return voc⃗ tr .nose length ;

}
This code is used in section 12.

14 TOP-LEVEL FUNCTIONS VOC §25

25. The function sp voc set diameter () is a function adopted from Neil Thapen’s Pink Trombone in a
function he called setRestDiameter. It is the main function in charge of the ”tongue position” XY control.
Modifications to the original function have been made in an attempt to make the function more generalized.
Instead of relying on internal state, all variables used are parameters in the function. Because of this fact,
there are quite a few function parameters:
• voc, the core Voc data struct
• blade start, index where the blade (?) starts. this is set to 10 in pink trombone
• lip start, index where lip starts. this constant is set to 39.
• tip start, this is set to 32.
• tongue index, nominal range [12 .. 29]
• tongue diameter, nominal range [2 .. 3.5]
• diameters, the floating point array to write to
For practical use cases, it is not ideal to call this function directly. Instead, it can be indirectly called

using a more sane function sp voc set tongue shape (), found in the section ⟨Voc Set Tongue Shape 26 ⟩.
⟨Voc Set Diameters 25 ⟩ ≡

void sp voc set diameters (sp voc ∗voc ,
int blade start ,
int lip start ,
int tip start ,
SPFLOATtongue index ,
SPFLOATtongue diameter ,
SPFLOAT ∗ diameters)
{
SPFLOATgrid offset = 1.7;
SPFLOATfixed tongue diameter = 2 + (tongue diameter − 2)/1.5;
SPFLOATtongue amplitude = (1.5− fixed tongue diameter + grid offset);

int i;

SPFLOATt;
SPFLOATcurve ;
for (i = blade start ; i < lip start ; i++) {
t = 1.1 ∗ M_PI ∗ (SPFLOAT)(tongue index − i)/(tip start − blade start);
fixed tongue diameter = 2 + (tongue diameter − 2)/1.5;
curve = tongue amplitude ∗ cos (t);
if (i ≡ lip start − 1) curve ∗= 0.8;
if (i ≡ blade start ∨ i ≡ lip start − 2) curve ∗= 0.94;
diameters [i] = 1.5− curve ;

}
}

This code is cited in section 26.

This code is used in section 12.

§26 VOC TOP-LEVEL FUNCTIONS 15

26. The function sp voc set tongue shape () will set the shape of the tongue using the two primary ar-
guments tongue index and tongue diameter . It is a wrapper around the function described in ⟨Voc Set
Diameters 25 ⟩, filling in the constants used, and thereby making it simpler to work with.
A few tract shapes shaped using this function have been generated below:

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45

Tract of tongueshape(20.5, 3.5)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45

Tract of tongueshape(25.5, 3.5)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45

Tract of tongueshape(20.5, 2.0)

⟨Voc Set Tongue Shape 26 ⟩ ≡
void sp voc set tongue shape (sp voc ∗voc , SPFLOATtongue index ,
SPFLOATtongue diameter)
{
SPFLOAT ∗ diameters ;
diameters = sp voc get tract diameters (voc);
sp voc set diameters (voc , 10, 39, 32, tongue index , tongue diameter , diameters);

}
This code is cited in sections 25 and 79.

This code is used in section 12.

16 TOP-LEVEL FUNCTIONS VOC §27

27. Voc keeps an internal counter for control rate operations called inside of the audio-rate compute
function in ⟨Voc Compute 16 ⟩. The function sp voc get counter () gets the current counter position. When
the counter is 0, the next call to sp voc compute will compute another block of audio. Getting the counter
position before the call allows control-rate variables to be set before then.

⟨Voc Get Counter 27 ⟩ ≡
int sp voc get counter (sp voc ∗voc)
{
return voc⃗ counter ;

}
This code is used in section 12.

28. The function sp voc set glottis enable controls the on/off state of the glottis. Attack and release
envelopes are applied on transitions.

⟨Voc Set Glottis Enable 28 ⟩ ≡
void sp voc set glottis enable (sp voc ∗voc , int enable)
{
voc⃗ glot .enable = enable ;

}
This code is used in section 12.

29. The function sp voc set tenseness is used to set the tenseness variable, used when calculating glottal
time coefficients in ⟨Set up Glottis Waveform 37 ⟩, and is the main factor in calculating aspiration noise in
⟨Glottis Computation 36 ⟩. Typically this is a value between 0 and 1. A value of 1 gives a full vocal sound,
while a value of 0 is all breathy. It is ideal to have a little bit of aspiration noise. Empirically good values
tend to be in the range of [0.6, 0.9].

⟨Voc Set Tenseness 29 ⟩ ≡
void sp voc set tenseness (sp voc ∗voc , SPFLOATtenseness)
{
voc⃗ glot .tenseness = tenseness ;

}
This code is used in section 12.

30. The function sp voc get tenseness ptr returns an SPFLOAT pointer to the parameter value directly
controlling tenseness. This function is useful for GUI frontends that use direct pointer manipulation like
Nuklear, the cross-platform UI framework used to make a demo for Voc.

⟨Voc Get Tenseness 30 ⟩ ≡
SPFLOAT ∗ sp voc get tenseness ptr (sp voc ∗voc)
{
return &voc⃗ glot .tenseness ;

}
This code is used in section 12.

31. The function sp voc set velum sets the velum, or soft pallette of tract model. In the original imple-
mentation, the default value is 0.01, and set to a value of 0.04 to get a nasally sound.

⟨Voc Set Velum 31 ⟩ ≡
void sp voc set velum (sp voc ∗voc , SPFLOATvelum)
{
voc⃗ tr .velum target = velum ;

}
This code is used in section 12.

§32 VOC TOP-LEVEL FUNCTIONS 17

32. The function sp voc get velum ptr returns the pointer associated with the velum, allowing direct
control of the velum parameter. This function was created for use with a demo requiring direct access.

⟨Voc Get Velum 32 ⟩ ≡
SPFLOAT ∗ sp voc get velum ptr (sp voc ∗voc)
{
return &voc⃗ tr .velum target ;

}
This code is used in section 12.

18 THE GLOTTIS VOC §33

The Glottis (33)

This is where the synthesis of the glottal source signal will be created.
While the implementation comes directly from Pink Trombone’s JavaScript code, it should be noted that

the glottal model is based on a modified LF-model[lu2000glottal].

⟨The Glottis 33 ⟩ ≡
⟨Set up Glottis Waveform 37 ⟩
⟨Glottis Initialization 34 ⟩
⟨Glottis Update 35 ⟩
⟨Glottis Computation 36 ⟩

This code is cited in sections 1 and 6.

This code is used in section 1.

34. Initializiation of the glottis is done inside of glottis init .

⟨Glottis Initialization 34 ⟩ ≡
static void glottis init (glottis ∗glot , SPFLOATsr)
{
glot⃗ enable = 1; /∗ boolean 0 or 1 ∗/
glot⃗ freq = 140; /∗ 140Hz frequency by default ∗/
glot⃗ tenseness = 0.6; /∗ value between 0 and 1 ∗/
glot⃗ intensity = 0; /∗ value between 0 and 1 ∗/
glot⃗ attack time = 0.09;
glot⃗ release time = 0.23;
glot⃗ T = 1.0/sr ; /∗ big T ∗/
glot⃗ time in waveform = 0;
glottis setup waveform (glot , 0);

}
This code is used in section 33.

35. This is where glottis parameters are updated per sample block

⟨Glottis Update 35 ⟩ ≡
static void glottis update (glottis ∗glot , SPFLOATblock time)
{ /∗ update attack and release envelope ∗/
SPFLOATtarget intensity = glot⃗ enable ≡ 1 ? 1 : 0;
glot⃗ intensity = move towards (glot⃗ intensity , target intensity , block time/glot⃗ attack time ,

block time/glot⃗ release time);
}

This code is used in section 33.

§36 VOC THE GLOTTIS 19

36. This is where a single sample of audio is computed for the glottis

⟨Glottis Computation 36 ⟩ ≡
static SPFLOATglottis compute (sp data ∗ sp ,glottis ∗glot , SPFLOATlambda)
{
SPFLOATout ;
SPFLOATaspiration ;
SPFLOATnoise ;
SPFLOATt;
SPFLOATvoice loudness ;
out = 0;
glot⃗ time in waveform += glot⃗ T ;
if (glot⃗ time in waveform > glot⃗ waveform length) {

glot⃗ time in waveform −= glot⃗ waveform length ;
glottis setup waveform (glot , lambda);

}
t = (glot⃗ time in waveform/glot⃗ waveform length);
if (t > glot⃗ Te) {

out = (−exp(−glot⃗ epsilon ∗ (t− glot⃗ Te)) + glot⃗ shift)/glot⃗ delta ;
}
else {
out = glot⃗ E0 ∗ exp(glot⃗ alpha ∗ t) ∗ sin (glot⃗ omega ∗ t);

}
voice loudness = pow (glot⃗ tenseness , 0.25);
out ∗= voice loudness ;
noise = 1.0 ∗ ((SPFLOAT)sp rand (sp)/SP_RANDMAX)− 0.5;
aspiration = (1− sqrt (glot⃗ tenseness)) ∗ 0.2 ∗ noise ;
aspiration ∗= 0.2;
out += aspiration ;
return out ∗ glot⃗ intensity ;

}
This code is cited in sections 29 and 39.

This code is used in section 33.

37. The function glottis setup waveform is tasked with setting the variables needed to create the glottis
waveform. The glottal model used here is known as the LF-model, as described in Lu and Smith[lu2000glottal].

⟨Set up Glottis Waveform 37 ⟩ ≡
static void glottis setup waveform (glottis ∗glot , SPFLOATlambda){⟨Set up local variables 38 ⟩

⟨Derive waveform length and Rd 39 ⟩
⟨Derive Ra, Rk, and Rg 40 ⟩
⟨Derive Ta, Tp, and Te 41 ⟩
⟨Calculate epsilon, shift, and delta 42 ⟩
⟨Calculate Integrals 43 ⟩
⟨Calculate E0 44 ⟩
⟨Update variables in glottis data structure 45 ⟩}

This code is cited in section 29.

This code is used in section 33.

20 THE GLOTTIS VOC §38

38. A number of local variables are used for intermediate calculations. They are described below.

⟨Set up local variables 38 ⟩ ≡
SPFLOATRd ;
SPFLOATRa ;
SPFLOATRk ;
SPFLOATRg ;
SPFLOATTa ;
SPFLOATTp ;
SPFLOATTe ;
SPFLOATepsilon ;
SPFLOATshift ;
SPFLOATdelta ;
SPFLOATrhs integral ;
SPFLOATlower integral ;
SPFLOATupper integral ;
SPFLOATomega ;
SPFLOATs;
SPFLOATy;
SPFLOATz;
SPFLOATalpha ;
SPFLOATE0;

This code is used in section 37.

39. To begin, both waveform length and Rd are calcuated.
The variable waveform length is the period of the waveform based on the current frequency, and will be

used later on in ⟨Glottis Computation 36 ⟩.
Rd is part of a set of normalized timing parameters used to calculate the time coefficients described in the

LF model [fant1997voice]. The other timing parameters Ra, Rg, and Rk can be computed in terms of Rd,
which is why this gets computed first. Rd is derived from the parameter glot⃗ tenseness .

Rd is then clamped to be in between 0.5 and 2.7, as these are good approximations[lu2000glottal].

⟨Derive waveform length and Rd 39 ⟩ ≡
glot⃗ Rd = 3 ∗ (1− glot⃗ tenseness);
glot⃗ waveform length = 1.0/glot⃗ freq ;
Rd = glot⃗ Rd ;
if (Rd < 0.5) Rd = 0.5;
if (Rd > 2.7) Rd = 2.7;

This code is used in section 37.

§40 VOC THE GLOTTIS 21

40. Rd can be used to calculate approximations for Ra, Rg, and Rk. The equations described below have
been derived using linear regression.

Rap =
(−1 + 4.8Rd)

100

Rkp =
(22.4 + 11.8Rd)

100

Rgp is derived using the results from Rap and Rkp in the following equation described in Fant 1997:

Rd = (1/0.11)(0.5 + 1.2Rk)(Rk/4Rg +Ra)

Which yields:

Rgp =
(Rkp/4)(0.5 + 1.2Rkp)

(0.11Rd −Rap ∗ (0.5 + 1.2Rkp))

⟨Derive Ra, Rk, and Rg 40 ⟩ ≡
Ra = −0.01 + 0.048 ∗ Rd ;
Rk = 0.224 + 0.118 ∗ Rd ;
Rg = (Rk /4) ∗ (0.5 + 1.2 ∗ Rk)/(0.11 ∗ Rd − Ra ∗ (0.5 + 1.2 ∗ Rk));

This code is used in section 37.

41. The parameters approximating Ra, Rg, and Rk can be used to calculate the timing parameters Ta,
Tp, and Te in the LF model:

Ta = Rap

Tp = 2R−1
gp

Te = Tp + TpRkp

⟨Derive Ta, Tp, and Te 41 ⟩ ≡
Ta = Ra ;
Tp = (SPFLOAT)1.0/(2 ∗ Rg);
Te = Tp + Tp ∗ Rk ;

This code is used in section 37.

42. ⟨Calculate epsilon, shift, and delta 42 ⟩ ≡
epsilon = (SPFLOAT)1.0/Ta ;
shift = exp(−epsilon ∗ (1− Te));
delta = 1− shift ;

This code is used in section 37.

43. ⟨Calculate Integrals 43 ⟩ ≡
rhs integral = (SPFLOAT)(1.0/epsilon) ∗ (shift − 1) + (1− Te) ∗ shift ;
rhs integral = rhs integral /delta ;
lower integral = −(Te − Tp)/2 + rhs integral ;
upper integral = −lower integral ;

This code is used in section 37.

22 THE GLOTTIS VOC §44

44.

E0 = − Ee

eαT sinωgTe

ω =
π

Tp

ϵTa = 1− e−ϵ(Tc−Te)

⟨Calculate E0 44 ⟩ ≡
omega = M_PI/Tp ;
s = sin (omega ∗ Te);
y = −M_PI ∗ s ∗ upper integral /(Tp ∗ 2);
z = log (y);
alpha = z/(Tp/2− Te);
E0 = −1/(s ∗ exp(alpha ∗ Te));

This code is used in section 37.

45. ⟨Update variables in glottis data structure 45 ⟩ ≡
glot⃗ alpha = alpha ;
glot⃗ E0 = E0;
glot⃗ epsilon = epsilon ;
glot⃗ shift = shift ;
glot⃗ delta = delta ;
glot⃗ Te = Te ;
glot⃗ omega = omega ;

This code is used in section 37.

§46 VOC THE VOCAL TRACT 23

The Vocal Tract (46)

The vocal tract is the part of the vocal model which takes the excitation signal (the glottis) and produces
the vowel formants from it.
The two main functions for the vocal tract consist of of an initialization function tract init called once

before runtime, and a computation function tract compute called at twice the sampling rate. See ⟨Vocal
Tract Initialization 47 ⟩ and ⟨Vocal Tract Computation 52 ⟩ for more detail.

⟨The Vocal Tract 46 ⟩ ≡
⟨Calculate Vocal Tract Reflections 58 ⟩
⟨Calculate Vocal Tract Nose Reflections 59 ⟩
⟨Vocal Tract Transients 61 ⟩
⟨Reshape Vocal Tract 60 ⟩
⟨Vocal Tract Initialization 47 ⟩
⟨Vocal Tract Computation 52 ⟩

This code is cited in sections 1 and 69.

This code is used in section 1.

47. The function tract init is responsible for zeroing out variables and buffers, as well as setting up
constants.

⟨Vocal Tract Initialization 47 ⟩ ≡
static void tract init (sp data ∗ sp , tract ∗tr)
{
int i;

SPFLOATdiameter , d; /∗ needed to set up diameter arrays ∗/
⟨ Initialize Tract Constants and Variables 48 ⟩
⟨Zero Out Tract Buffers 49 ⟩
⟨Set up Vocal Tract Diameters 50 ⟩
⟨Set up Nose Diameters 51 ⟩
tract calculate reflections (tr);
tract calculate nose reflections (tr);
tr⃗nose diameter [0] = tr⃗velum target ;
tr⃗block time = 512.0/(SPFLOAT)sp⃗ sr ;
tr⃗T = 1.0/(SPFLOAT)sp⃗ sr ;
⟨ Initialize Transient Pool 62 ⟩

}
This code is cited in sections 46 and 62.

This code is used in section 46.

24 THE VOCAL TRACT VOC §48

48. ⟨ Initialize Tract Constants and Variables 48 ⟩ ≡
tr⃗n = 44;
tr⃗nose length = 28;
tr⃗nose start = 17;
tr⃗reflection left = 0.0;
tr⃗reflection right = 0.0;
tr⃗reflection nose = 0.0;
tr⃗new reflection left = 0.0;
tr⃗new reflection right = 0.0;
tr⃗new reflection nose = 0.0;
tr⃗velum target = 0.01;
tr⃗glottal reflection = 0.75;
tr⃗ lip reflection = −0.85;
tr⃗ last obstruction = −1;
tr⃗movement speed = 15;
tr⃗ lip output = 0;
tr⃗nose output = 0;
tr⃗ tip start = 32;

This code is used in section 47.

49. Several floating-point arrays are needed for the scattering junctions. C does not zero these out by
default. Below, the standard function memset () from string .h is used to zero out each of the blocks of
memory.

⟨Zero Out Tract Buffers 49 ⟩ ≡
memset (tr⃗diameter , 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗rest diameter , 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗ target diameter , 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗L, 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗R, 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗reflection , 0, (tr⃗n+ 1) ∗ sizeof (SPFLOAT));
memset (tr⃗new reflection , 0, (tr⃗n+ 1) ∗ sizeof (SPFLOAT));
memset (tr⃗ junction outL, 0, (tr⃗n+ 1) ∗ sizeof (SPFLOAT));
memset (tr⃗ junction outR , 0, (tr⃗n+ 1) ∗ sizeof (SPFLOAT));
memset (tr⃗A, 0, tr⃗n ∗ sizeof (SPFLOAT));
memset (tr⃗noseL, 0, tr⃗nose length ∗ sizeof (SPFLOAT));
memset (tr⃗noseR , 0, tr⃗nose length ∗ sizeof (SPFLOAT));
memset (tr⃗nose junc outL, 0, (tr⃗nose length + 1) ∗ sizeof (SPFLOAT));
memset (tr⃗nose junc outR , 0, (tr⃗nose length + 1) ∗ sizeof (SPFLOAT));
memset (tr⃗nose diameter , 0, tr⃗nose length ∗ sizeof (SPFLOAT));
memset (tr⃗noseA, 0, tr⃗nose length ∗ sizeof (SPFLOAT));

This code is used in section 47.

§50 VOC THE VOCAL TRACT 25

50. The cylindrical diameters approximating the vocal tract are set up below. These diameters will be
modified and shaped by user control to shape the vowel sound.
The initial shape of the vocal tract is plotted below:

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45

Initial Tract Shape

⟨Set up Vocal Tract Diameters 50 ⟩ ≡
for (i = 0; i < tr⃗n; i++) {
diameter = 0;
if (i < 7 ∗ (SPFLOAT)tr⃗n/44− 0.5) {

diameter = 0.6;
}
else if (i < 12 ∗ (SPFLOAT)tr⃗n/44) {

diameter = 1.1;
}
else {
diameter = 1.5;

}
tr⃗diameter [i] = tr⃗rest diameter [i] = tr⃗ target diameter [i] = diameter ;

}
This code is used in section 47.

26 THE VOCAL TRACT VOC §51

51. The cylindrical diameters representing nose are set up. These are only set once, and are immutable
for the rest of the program.
The shape of the nasal passage is plotted below:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30

Initial Nose Shape

⟨Set up Nose Diameters 51 ⟩ ≡
for (i = 0; i < tr⃗nose length ; i++) {
d = 2 ∗ ((SPFLOAT)i/tr⃗nose length);
if (d < 1) {
diameter = 0.4 + 1.6 ∗ d;

}
else {
diameter = 0.5 + 1.5 ∗ (2− d);

}
diameter = MIN(diameter , 1.9);
tr⃗nose diameter [i] = diameter ;

}
This code is used in section 47.

52. The vocal tract computation function computes a single sample of audio. As the original implemen-
tation describes it, this function is designed to run at twice the sampling rate. For this reason, it is called
twice in the top level call back (see ⟨Voc Create 13 ⟩).
tract compute has two input arguments. The variable in is the glottal excitation signal. The lambda

variable is a coefficient for a linear crossfade along the buffer block, used for parameter smoothing.

⟨Vocal Tract Computation 52 ⟩ ≡
static void tract compute (sp data ∗ sp , tract ∗tr , SPFLOAT in , SPFLOAT lambda)
{
SPFLOAT r, w;

int i;

SPFLOAT amp ;

int current size ;
transient pool ∗pool ;
transient ∗n;
⟨Process Transients 65 ⟩
⟨Calculate Scattering Junctions 53 ⟩
⟨Calculate Scattering for Nose 54 ⟩
⟨Update Left/Right delay lines and set lip output 55 ⟩
⟨Calculate Nose Scattering Junctions 56 ⟩
⟨Update Nose Left/Right delay lines and set nose output 57 ⟩

}
This code is cited in sections 46 and 65.

This code is used in section 46.

§53 VOC THE VOCAL TRACT 27

53. A derivation of w can be seen in section 2.5.2 of Jack Mullens PhD dissertation Physical Modelling of
the Vocal Tract with the 2D Digital Waveguide Mesh. [mullen2006physical]

⟨Calculate Scattering Junctions 53 ⟩ ≡
tr⃗ junction outR [0] = tr⃗L[0] ∗ tr⃗glottal reflection + in ;
tr⃗ junction outL[tr⃗n] = tr⃗R[tr⃗n− 1] ∗ tr⃗ lip reflection ;
for (i = 1; i < tr⃗n; i++) {
r = tr⃗reflection [i] ∗ (1− lambda) + tr⃗new reflection [i] ∗ lambda ;
w = r ∗ (tr⃗R[i− 1] + tr⃗L[i]);
tr⃗ junction outR [i] = tr⃗R[i− 1]− w;
tr⃗ junction outL[i] = tr⃗L[i] + w;

}
This code is used in section 52.

54. ⟨Calculate Scattering for Nose 54 ⟩ ≡
i = tr⃗nose start ;
r = tr⃗new reflection left ∗ (1− lambda) + tr⃗reflection left ∗ lambda ;
tr⃗ junction outL[i] = r ∗ tr⃗R[i− 1] + (1 + r) ∗ (tr⃗noseL[0] + tr⃗L[i]);
r = tr⃗new reflection right ∗ (1− lambda) + tr⃗reflection right ∗ lambda ;
tr⃗ junction outR [i] = r ∗ tr⃗L[i] + (1 + r) ∗ (tr⃗R[i− 1] + tr⃗noseL[0]);
r = tr⃗new reflection nose ∗ (1− lambda) + tr⃗reflection nose ∗ lambda ;
tr⃗nose junc outR [0] = r ∗ tr⃗noseL[0] + (1 + r) ∗ (tr⃗L[i] + tr⃗R[i− 1]);

This code is used in section 52.

55. ⟨Update Left/Right delay lines and set lip output 55 ⟩ ≡
for (i = 0; i < tr⃗n; i++) {
tr⃗R[i] = tr⃗ junction outR [i] ∗ 0.999;
tr⃗L[i] = tr⃗ junction outL[i+ 1] ∗ 0.999;

}
tr⃗ lip output = tr⃗R[tr⃗n− 1];

This code is used in section 52.

56. ⟨Calculate Nose Scattering Junctions 56 ⟩ ≡
tr⃗nose junc outL[tr⃗nose length] = tr⃗noseR [tr⃗nose length − 1] ∗ tr⃗ lip reflection ;
for (i = 1; i < tr⃗nose length ; i++) {
w = tr⃗nose reflection [i] ∗ (tr⃗noseR [i− 1] + tr⃗noseL[i]);
tr⃗nose junc outR [i] = tr⃗noseR [i− 1]− w;
tr⃗nose junc outL[i] = tr⃗noseL[i] + w;

}
This code is used in section 52.

57. ⟨Update Nose Left/Right delay lines and set nose output 57 ⟩ ≡
for (i = 0; i < tr⃗nose length ; i++) {
tr⃗noseR [i] = tr⃗nose junc outR [i];
tr⃗noseL[i] = tr⃗nose junc outL[i+ 1];

}
tr⃗nose output = tr⃗noseR [tr⃗nose length − 1];

This code is used in section 52.

28 THE VOCAL TRACT VOC §58

58. The function tract calculate reflections computes reflection coefficients used in the scattering junction.
Because this is a rather computationally expensive function, it is called once per render block, and then
smoothed.
First, the cylindrical areas of tract section are computed by squaring the diameters, they are stored in the

struct variable A.
Using the areas calculated, the reflections are calculated using the following formula:

Ri =
Ai−1 −Ai

Ai−1 +Ai

To prevent some divide-by-zero edge cases, when Ai is exactly zero, it is set to be 0.999.
From there, the new coefficients are set.

⟨Calculate Vocal Tract Reflections 58 ⟩ ≡
static void tract calculate reflections (tract ∗tr)
{
int i;

SPFLOAT sum ;
for (i = 0; i < tr⃗n; i++) {
tr⃗A[i] = tr⃗diameter [i] ∗ tr⃗diameter [i]; /∗ Calculate area from diameter squared ∗/

}
for (i = 1; i < tr⃗n; i++) {
tr⃗reflection [i] = tr⃗new reflection [i];
if (tr⃗A[i] ≡ 0) {
tr⃗new reflection [i] = 0.999; /∗ to prevent bad behavior if 0 ∗/

}
else {
tr⃗new reflection [i] = (tr⃗A[i− 1]− tr⃗A[i])/(tr⃗A[i− 1] + tr⃗A[i]);

}
}
tr⃗reflection left = tr⃗new reflection left ;
tr⃗reflection right = tr⃗new reflection right ;
tr⃗reflection nose = tr⃗new reflection nose ;
sum = tr⃗A[tr⃗nose start] + tr⃗A[tr⃗nose start + 1] + tr⃗noseA[0];
tr⃗new reflection left = (SPFLOAT)(2 ∗ tr⃗A[tr⃗nose start]− sum)/sum ;
tr⃗new reflection right = (SPFLOAT)(2 ∗ tr⃗A[tr⃗nose start + 1]− sum)/sum ;
tr⃗new reflection nose = (SPFLOAT)(2 ∗ tr⃗noseA[0]− sum)/sum ;

}
This code is cited in section 59.

This code is used in section 46.

§59 VOC THE VOCAL TRACT 29

59. Similar to tract calculate reflections , this function computes reflection coefficients for the nasal scat-
tering junction. For more information on the math that is happening, see ⟨Calculate Vocal Tract Reflec-
tions 58 ⟩.
⟨Calculate Vocal Tract Nose Reflections 59 ⟩ ≡
static void tract calculate nose reflections (tract ∗tr)
{
int i;

for (i = 0; i < tr⃗nose length ; i++) {
tr⃗noseA[i] = tr⃗nose diameter [i] ∗ tr⃗nose diameter [i];

}
for (i = 1; i < tr⃗nose length ; i++) {
tr⃗nose reflection [i] = (tr⃗noseA[i− 1]− tr⃗noseA[i])/(tr⃗noseA[i− 1] + tr⃗noseA[i]);

}
}

This code is used in section 46.

60.

⟨Reshape Vocal Tract 60 ⟩ ≡
static void tract reshape (tract ∗tr)
{
SPFLOATamount ;
SPFLOATslow return ;
SPFLOATdiameter ;
SPFLOATtarget diameter ;

int i;
int current obstruction ;

current obstruction = −1;
amount = tr⃗block time ∗ tr⃗movement speed ;
for (i = 0; i < tr⃗n; i++) {
slow return = 0;
diameter = tr⃗diameter [i];
target diameter = tr⃗ target diameter [i];
if (diameter < 0.001) current obstruction = i;
if (i < tr⃗nose start) slow return = 0.6;
else if (i ≥ tr⃗ tip start) slow return = 1.0;
else {
slow return = 0.6 + 0.4 ∗ (i− tr⃗nose start)/(tr⃗ tip start − tr⃗nose start);

}
tr⃗diameter [i] = move towards (diameter , target diameter , slow return ∗ amount , 2 ∗ amount);

}
if (tr⃗ last obstruction > −1 ∧ current obstruction ≡ −1 ∧ tr⃗noseA[0] < 0.05) {
append transient (&tr⃗ tpool , tr⃗ last obstruction);

}
tr⃗ last obstruction = current obstruction ;
tr⃗nose diameter [0] = move towards (tr⃗nose diameter [0], tr⃗velum target , amount ∗0.25, amount ∗0.1);
tr⃗noseA[0] = tr⃗nose diameter [0] ∗ tr⃗nose diameter [0];

}
This code is cited in sections 21, 61, and 63.

This code is used in section 46.

30 THE VOCAL TRACT VOC §61

61. In Pink Trombone, there is a special handling of diameters that are exactly zero. From a physical point
of view, air is completly blocked, and this obstruction of air produces a transient ”click” sound. To simulate
this, any obstructions are noted during the reshaping of the vocal tract (see ⟨Reshape Vocal Tract 60 ⟩),
and the latest obstruction position is noted and pushed onto a stack of transients. During the vocal tract
computation, the exponential damping contributes to the overal amplitude of the left-going and right-going
delay lines at that precise diameter location. This can be seen in the section ⟨Process Transients 65 ⟩.
⟨Vocal Tract Transients 61 ⟩ ≡
⟨Append Transient 63 ⟩
⟨Remove Transient 64 ⟩

This code is used in section 46.

62. The transient pool is initialized inside along with the entire vocal tract inside of ⟨Vocal Tract Initial-
ization 47 ⟩. It essentially sets the pool to a size of zero and that the first available free transient is at index
”0”.
The transients in the pool will all have their boolean variable is free , set to be true so that they can be in

line to be selected.
To remove any valgrind issues related to unitialized variables, all the members in the transient data

struct are set to some parameter.

⟨ Initialize Transient Pool 62 ⟩ ≡
tr⃗ tpool .size = 0;
tr⃗ tpool .next free = 0;
for (i = 0; i < MAX_TRANSIENTS; i++) {
tr⃗ tpool .pool [i].is free = 1;
tr⃗ tpool .pool [i].id = i;
tr⃗ tpool .pool [i].position = 0;
tr⃗ tpool .pool [i].time alive = 0;
tr⃗ tpool .pool [i].strength = 0;
tr⃗ tpool .pool [i].exponent = 0;

}
This code is used in section 47.

§63 VOC THE VOCAL TRACT 31

63. Any obstructions noted during ⟨Reshape Vocal Tract 60 ⟩ must be appended to the list of previous
transients. The function will return a 0 on failure, and a 1 on success.
Here is an overview of how a transient may get appended:

0. Check and see if the pool is full. If this is so, return 0.
1. If there is no recorded next free (the id is -1), search for one using brute force and check for any free

transients. If none can be found, return 0. Since MAX_TRANSIENTS is a low N, even the worst-case searches
do not pose a significant performance penalty.

2. With a transient found, assign the current root of the list to be the next value in the transient. (It does
not matter if the root is NULL, because the size of the list will prevent it from ever being accessed.)

3. Increase the size of the pool by 1.
4. Toggle the is free boolean of the current transient to be false.
5. Set the position .
6. Set the time alive to be zero seconds.
7. Set the lifetime to be 200ms, or 0.2 seconds.
8. Set the strength to an amplitude 0.3.
9. Set the exponent parameter to be 200.

10. Set the next free parameter to be −1.

⟨Append Transient 63 ⟩ ≡
static int append transient (transient pool ∗pool , int position)
{
int i;
int free id ;
transient ∗t;
free id = pool⃗ next free ;
if (pool⃗ size ≡ MAX_TRANSIENTS) return 0;
if (free id ≡ −1) {
for (i = 0; i < MAX_TRANSIENTS; i++) {
if (pool⃗ pool [i].is free) {
free id = i;
break;

}
}

}
if (free id ≡ −1) return 0;
t = &pool⃗ pool [free id];
t⃗ next = pool⃗ root ;
pool⃗ root = t;
pool⃗ size++;
t⃗ is free = 0;
t⃗ time alive = 0;
t⃗ lifetime = 0.2;
t⃗ strength = 0.3;
t⃗ exponent = 200;
t⃗ position = position ;
pool⃗ next free = −1;
return 0;

}
This code is used in section 61.

32 THE VOCAL TRACT VOC §64

64. When a transient has lived it’s lifetime, it must be removed from the list of transients. To keep things
sane, transients have a unique ID for identification. This is preferred to comparing pointer addresses. While
more efficient, this method is prone to subtle implementation errors.
The method for removing a transient from a linked list is fairly typical:

0. If the transient *is* the root, set the root to be the next value. Decrease the size by one, and return.
1. Iterate through the list and search for the entry.
2. Once the entry has been found, decrease the pool size by 1.
3. The transient, now free for reuse, can now be toggled to be free, and it can be the next variable ready to

be used again.

⟨Remove Transient 64 ⟩ ≡
static void remove transient (transient pool ∗pool ,unsigned int id)
{
int i;
transient ∗n;
pool⃗ next free = id ;
n = pool⃗ root ;
if (id ≡ n⃗ id) {

pool⃗ root = n⃗ next ;
pool⃗ size−−;
return;

}
for (i = 0; i < pool⃗ size ; i++) {
if (n⃗ next⃗ id ≡ id) {
pool⃗ size−−;
n⃗ next⃗ is free = 1;
n⃗ next = n⃗ next⃗ next ;
break;

}
n = n⃗ next ;

}
}

This code is used in section 61.

§65 VOC THE VOCAL TRACT 33

65. Transients are processed during ⟨Vocal Tract Computation 52 ⟩. The transient list is iterated through,
their contributions are made to the Left and Right delay lines.
In this implementation, the transients in the list are iterated through, and their contributions are calculated

using the following exponential function:

A = s2−E0∗t

Where:
• A is the contributing amplitude to the left and right-going components.
• s is the overall strength of the transient.
• E0 is the exponent variable constant.
• t is the time alive.
This particular function also must check for any transients that need to be removed, and removes them.

Some caution must be made to make sure that this is done properly. Because a call to remove transient
changes the size of the pool, a copy of the current size is copied to a variable for the for loop. Since the list
iterates in order, it is presumably safe to remove values from the list while the list is iterating.

⟨Process Transients 65 ⟩ ≡
pool = &tr⃗ tpool ;
current size = pool⃗ size ;
n = pool⃗ root ;
for (i = 0; i < current size ; i++) {
amp = n⃗ strength ∗ pow (2,−1.0 ∗ n⃗ exponent ∗ n⃗ time alive);
tr⃗L[n⃗ position] += amp ∗ 0.5;
tr⃗R[n⃗ position] += amp ∗ 0.5;
n⃗ time alive += tr⃗T ∗ 0.5;
if (n⃗ time alive > n⃗ lifetime) {

remove transient (pool , n⃗ id);
}
n = n⃗ next ;

}
This code is cited in section 61.

This code is used in section 52.

34 HEADER FILE VOC §66

Header File (66)

CTANGLE will end up generating two files: a single C amalgamation and this header file.
This header file exists for individuals who wish to use Voc in their own programs. Voc follows Soundpipe’s

hardware-agnostic design, and should be trivial to throw in any DSP inner loop.
The contents of the header is fairly minimal. Following a standard header guard, the contents consist of:

• a typedef around the opaque struct sp voc
• function declarations which adhere to the 4-stage Soundpipe module lifecycle model.
• a collection of setter/getter functions to allow to get and set data from the opaque struct.
Since Voc makes use of opaque struct pointers, this header file will need to declare setter/getter functions

for any user parameters.

⟨ voc.h 66 ⟩ ≡
#ifndef SP_VOC

#define SP_VOC

typedef struct sp voc sp voc;
int sp voc create (sp voc ∗∗voc);
int sp voc destroy (sp voc ∗∗voc);
int sp voc init (sp data ∗ sp , sp voc ∗voc);
int sp voc compute (sp data ∗ sp , sp voc ∗voc , SPFLOAT ∗ out);
int sp voc tract compute (sp data ∗ sp , sp voc ∗voc , SPFLOAT ∗ in , SPFLOAT ∗ out);
void sp voc set frequency (sp voc ∗voc , SPFLOATfreq);
SPFLOAT ∗ sp voc get frequency ptr (sp voc ∗voc);
SPFLOAT ∗ sp voc get tract diameters (sp voc ∗voc);
SPFLOAT ∗ sp voc get current tract diameters (sp voc ∗voc);
int sp voc get tract size (sp voc ∗voc);
SPFLOAT ∗ sp voc get nose diameters (sp voc ∗voc);
int sp voc get nose size (sp voc ∗voc);
void sp voc set tongue shape (sp voc ∗voc , SPFLOATtongue index , SPFLOATtongue diameter);
void sp voc set glottis enable (sp voc ∗voc , int enable);
void sp voc set tenseness (sp voc ∗voc , SPFLOATbreathiness);
SPFLOAT ∗ sp voc get tenseness ptr (sp voc ∗voc);
void sp voc set velum (sp voc ∗voc , SPFLOATvelum);

SPFLOAT ∗ sp voc get velum ptr (sp voc ∗voc);
void sp voc set diameters (sp voc ∗voc , int blade start , int lip start , int tip start ,

SPFLOATtongue index , SPFLOATtongue diameter , SPFLOAT ∗ diameters);
int sp voc get counter (sp voc ∗voc);

#endif

This code is cited in sections 1 and 3.

§67 VOC SMALL APPLICATIONS AND EXAMPLES 35

Small Applications and Examples (67)

It has been fruitful investment to write small applications to assist in the debugging process. Such programs
can be used to generate plots or visuals, or to act as a simple program to be used with GDB. In addition to
debugging, these programs are also used to quickly try out concepts or ideas.

36 SMALL APPLICATIONS AND EXAMPLES VOC §68

68.

A Program for Non-Realtime Processing and Debugging
The example program below is a C program designed out of necessity to debug and test Voc. It a program

with a simple commandline interface, where the user gives a ”mode” along with set of optional arguments.
The following modes are as follows:

• audio: writes an audio file called ”test.wav”. You must supply a duration (in samples).
• plot: Uses sp process plot to generate a matlab/octave compatible program that plots the audio output.
• tongue: Will be a test program that experiments with parameters manipulating tongue position. It takes
in tongue index and diameter parameters, to allow for experimentation without needing to recompile.
The functions needed to call Voc from C in this way are found in the section ⟨Top Level Functions 12 ⟩.

⟨ debug.c 68 ⟩ ≡
#include <soundpipe.h>

#include <string.h>

#include <stdlib.h>

#include "voc.h"

static void process (sp data ∗ sp ,void ∗ud)
{
SPFLOATout ;

sp voc ∗voc = ud ;

sp voc compute (sp , voc ,&out);
sp out (sp , 0, out);

}
static void run voc(long len , int type)
{
sp voc ∗voc ;
sp data ∗ sp ;
sp create (&sp);
sp⃗ len = len ;
sp voc create (&voc);
sp voc init (sp , voc);
if (type ≡ 0) {
sp process plot (sp , voc , process);

}
else {
sp process (sp , voc , process);

}
sp voc destroy (&voc);
sp destroy (&sp);

}
static void run tongue (SPFLOATtongue index , SPFLOATtongue diameter)
{
sp voc ∗voc ;
sp data ∗ sp ;
sp create (&sp);
sp voc create (&voc);
sp voc init (sp , voc);
fprintf (stderr , "Tongue␣index:␣%g.␣Tongue␣diameter:␣%g\n", tongue index , tongue diameter);
sp voc set tongue shape (voc , tongue index , tongue diameter);
sp process (sp , voc , process);
sp voc destroy (&voc);

§68 VOC SMALL APPLICATIONS AND EXAMPLES 37

sp destroy (&sp);
}
int main (int argc , char ∗argv [])
{
if (argc ≡ 1) {

fprintf (stderr , "Pick␣a␣mode!\n");
exit (0);

}
if (¬strcmp(argv [1], "plot")) {
if (argc < 3) {

fprintf (stderr , "Usage:␣%s␣plot␣duration␣(samples)\n", argv [0]);
exit (0);

}
run voc(atoi (argv [2]), 0);

}
else if (¬strcmp(argv [1], "audio")) {

if (argc < 3) {
fprintf (stderr , "Usage:␣%s␣audio␣duration␣(samples)\n", argv [0]);
exit (0);

}
run voc(atoi (argv [2]), 1);

}
else if (¬strcmp(argv [1], "tongue")) {
if (argc < 4) {
fprintf (stderr , "Usage␣%s␣tongue␣tongue_index␣tongue_diameter\n", argv [0]);
exit (0);

}
run tongue (atof (argv [2]), atof (argv [3]));

}
else {
fprintf (stderr , "Error:␣invalid␣type␣%s\n", argv [1]);

}
return 0;

}
This code is cited in section 1.

38 SMALL APPLICATIONS AND EXAMPLES VOC §69

69.

A Utility for Plotting Data
The following program below is used to write data files to be read by GNUplot. The primary use of this

program is for generating use plots in this document, such as those seen in the section ⟨The Vocal Tract 46 ⟩.
⟨ plot.c 69 ⟩ ≡
#include <soundpipe.h>

#include <string.h>

#include <stdlib.h>

#include "voc.h"

static void plot tract ()
{
sp voc ∗voc ;
sp data ∗ sp ;
SPFLOAT

∗tract;
int size ;
int i;

sp create (&sp);

sp voc create (&voc);
sp voc init (sp , voc);

tract = sp voc get tract diameters (voc);

size = sp voc get tract size (voc);
for (i = 0; i < size ; i++) {
printf ("%i\t%g\n", i, tract[i]);

}
sp voc destroy (&voc);
sp destroy (&sp);

}
static void plot nose ()
{
sp voc ∗voc ;
sp data ∗ sp ;
SPFLOAT ∗ nose ;
int size ;
int i;

sp create (&sp);
sp voc create (&voc);
sp voc init (sp , voc);
nose = sp voc get nose diameters (voc);
size = sp voc get nose size (voc);
for (i = 0; i < size ; i++) {
printf ("%i\t%g\n", i,nose [i]);

}
sp voc destroy (&voc);
sp destroy (&sp);

}
static void plot tongue shape (int num)
{
sp voc ∗voc ;

§69 VOC SMALL APPLICATIONS AND EXAMPLES 39

sp data ∗ sp ;
SPFLOAT

∗tract;
int size ;
int i;

sp create (&sp);

sp voc create (&voc);
sp voc init (sp , voc);

tract = sp voc get tract diameters (voc);

size = sp voc get tract size (voc);
switch (num) {
case 1: sp voc set tongue shape (voc , 20.5, 3.5);

break;
case 2: sp voc set tongue shape (voc , 25.5, 3.5);
break;

case 3: sp voc set tongue shape (voc , 20.5, 2.0);
break;

case 4: sp voc set tongue shape (voc , 24.8, 1.4);
break;

}
for (i = 0; i < size ; i++) {
printf ("%i\t%g\n", i, tract[i]);

}
sp voc destroy (&voc);
sp destroy (&sp);

}
int main (int argc , char ∗∗argv)
{
if (argc < 2) {

fprintf (stderr , "Usage:␣%s␣plots/name.dat\n", argv [0]);
exit (1);

}
if (¬strncmp(argv [1], "plots/tract.dat", 100)) {
plot tract ();

}
else if (¬strncmp(argv [1], "plots/nose.dat", 100)) {
plot nose ();

}
else if (¬strncmp(argv [1], "plots/tongueshape1.dat", 100)) {

plot tongue shape (1);
}
else if (¬strncmp(argv [1], "plots/tongueshape2.dat", 100)) {

plot tongue shape (2);
}
else if (¬strncmp(argv [1], "plots/tongueshape3.dat", 100)) {

plot tongue shape (3);
}
else if (¬strncmp(argv [1], "plots/tongueshape4.dat", 100)) {

plot tongue shape (4);
}
else {

40 SMALL APPLICATIONS AND EXAMPLES VOC §69

fprintf (stderr , "Plot:␣could␣not␣find␣plot␣%s\n", argv [1]);
exit (1);

}
return 0;

}
This code is cited in section 1.

§70 VOC EXTERNAL SPORTH PLUGINS 41

External Sporth Plugins (70)

Sporth, a stack-based synthesis language, is the preferred tool of choice for sound design experimentation
and prototyping with Voc. A version of Voc has been ported to Sporth as third party plugin, known as an
external Sporth Plugin.

Sporth Plugins as Seen from Sporth
In Sporth, one has the ability to dynamically load custom unit-generators or, ugens, into Sporth. Such a

unit generator can be seen here in Sporth code:

voc ”./voc.so” fl
frequency

170 8 1 5 jitter +
tongue position

0 1 5 randi
tongue diameter

0 1 20 randi
breathiness

0.4 0.7 9 randi
velum amount

0
voc fe

Add reverberation using the Zita reverberator

dup dup 1 2 8000 zrev drop −3 ampdb ∗ +

close the plugin

voc fc

In the code above, the plugin file is loaded via fl (function load) and saved into the table voc. An
instance of voc is created with fe (function execute). Finally, the dynamic plugin is closed with fc

(function close).

Sporth plugins as seen from C.
Custom unit generators are written in C using a special interface provided by the Sporth API. The

functionality of an external sporth ugen is nearly identical to an internal one, with exceptions being the
function definition and how custom user-data is handled. Besides that, they can be seen as equivalent.
The entirety of the Sporth unit generator is contained within a single subroutine, declared static so as

to not clutter the global namespace. The crux of the function is a case switch outlining four unique states
of operation, which define the lifecycle of a Sporth ugen. This design concept comes from Soundpipe, the
music DSP library that Sporth is built on top of.
These states are executed in this order:

1. Create: allocates memory for the DSP module
2. Initialize: zeros out and sets up default values
3. Compute: Computes an audio-rate sample (or samples)
4. Destroy: frees all memory previously allocated in Create

Create and init are called once during runtime, compute is called as many times as needed while the
program is running, and destroy is called once when the program is stopped.
The code below shows the outline for the main Sporth Ugen.

⟨ ugen.c 70 ⟩ ≡
#include <stdlib.h>

#include <math.h>

#include <string.h>

42 EXTERNAL SPORTH PLUGINS VOC §70

#ifdef BUILD_SPORTH_PLUGIN

#include <soundpipe.h>

#include <sporth.h>

#include "voc.h"

#else
#include "plumber.h"

#endif
#ifdef BUILD_SPORTH_PLUGIN

static int sporth voc(plumber data ∗ pd , sporth stack ∗ stack ,void ∗∗ud)
#else

int sporth voc(sporth stack ∗ stack ,void ∗ud)
#endif

{
sp voc ∗voc ;
SPFLOATout ;
SPFLOATfreq ;
SPFLOATpos ;
SPFLOATdiameter ;
SPFLOATtenseness ;
SPFLOATnasal ;

#ifndef BUILD_SPORTH_PLUGIN

plumber data ∗ pd ;
pd = ud ;

#endif
switch (pd⃗mode) {
case PLUMBER_CREATE:
⟨Creation 71 ⟩;
break;

case PLUMBER_INIT:
⟨ Initialization 72 ⟩;
break;

case PLUMBER_COMPUTE:
⟨Computation 73 ⟩;
break;

case PLUMBER_DESTROY:
⟨Destruction 74 ⟩;
break;

}
return PLUMBER_OK;

}
⟨Return Function 75 ⟩

See also sections 76 and 77.

This code is cited in sections 1 and 12.

§71 VOC EXTERNAL SPORTH PLUGINS 43

71. The first state executed is creation, denoted by the macro PLUMBER_CREATE. This is the state where
memory is allocated, tables are created and stack arguments are checked for validity.
It is here that the top-level function ⟨Voc Create 13 ⟩ is called.

⟨Creation 71 ⟩ ≡
sp voc create (&voc);

#ifdef BUILD_SPORTH_PLUGIN

∗ud = voc ;
#else
plumber add ugen (pd , SPORTH_VOC, voc);

#endif
if (sporth check args (stack , "fffff") ̸= SPORTH_OK) {
plumber print (pd , "Voc:␣not␣enough␣arguments!\n");

}
nasal = sporth stack pop float (stack);
tenseness = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
freq = sporth stack pop float (stack);
sporth stack push float (stack , 0.0);

This code is used in section 70.

72. The second state executed is initialization, denoted by the macro PLUMBER_INIT. This is the state
where variables get initalised or zeroed out. It should be noted that auxiliary memory can allocated here
for things involving delay lines with user-specified sizes. For this reason, it is typically not safe to call this
twice for reinitialization. (The author admits that this is not an ideal design choice.)
It is here that the top-level function ⟨Voc Initialization 15 ⟩ is called.

⟨ Initialization 72 ⟩ ≡
#ifdef BUILD_SPORTH_PLUGIN

voc = ∗ud ;
#else
voc = pd⃗ last⃗ ud ;

#endif
sp voc init (pd⃗sp , voc);
nasal = sporth stack pop float (stack);
tenseness = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
freq = sporth stack pop float (stack);
sporth stack push float (stack , 0.0);

This code is used in section 70.

44 EXTERNAL SPORTH PLUGINS VOC §73

73. The third state executed is computation, denoted by the macro PLUMBER_COMPUTE. This state
happens during Sporth runtime in the audio loop. Generally speaking, this is where a Ugen will process
audio. In this state, strings in this callback are ignored; only floating point values are pushed and popped.
It is here that the top-level function ⟨Voc Compute 16 ⟩ is called.

⟨Computation 73 ⟩ ≡
#ifdef BUILD_SPORTH_PLUGIN

voc = ∗ud ;
#else
voc = pd⃗ last⃗ ud ;

#endif
nasal = sporth stack pop float (stack);
tenseness = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
freq = sporth stack pop float (stack);
sp voc set frequency (voc , freq);
sp voc set tenseness (voc , tenseness);
if (sp voc get counter (voc) ≡ 0) {
sp voc set velum (voc , 0.01 + 0.8 ∗ nasal);
sp voc set tongue shape (voc , 12 + 16.0 ∗ pos , diameter ∗ 3.5);

}
sp voc compute (pd⃗sp , voc ,&out);
sporth stack push float (stack , out);

This code is used in section 70.

74. The fourth and final state in a Sporth ugen is Destruction, denoted by PLUMBER_DESTROY. Any
memory allocated in PLUMBER_CREATE should be consequently freed here.
It is here that the top-level function ⟨Voc Destroy 14 ⟩ is called.

⟨Destruction 74 ⟩ ≡
#ifdef BUILD_SPORTH_PLUGIN

voc = ∗ud ;
#else
voc = pd⃗ last⃗ ud ;

#endif
sp voc destroy (&voc);

This code is used in section 70.

75. A dynamically loaded sporth unit-generated such as the one defined here needs to have a globally
accessible function called sporth return ugen . All this function needs to do is return the ugen function,
which is of type plumber dyn func .

⟨Return Function 75 ⟩ ≡
#ifdef BUILD_SPORTH_PLUGIN

plumber dyn funcsporth return ugen ()
{
return sporth voc ;

}
#endif

This code is used in section 70.

§76 VOC EXTERNAL SPORTH PLUGINS 45

76.

A Ugen for the Vocal Tract Model

⟨ ugen.c 70 ⟩ +≡
#ifdef BUILD_SPORTH_PLUGIN

static int sporth tract (plumber data ∗ pd , sporth stack ∗ stack ,void ∗∗ud)
{
sp voc ∗voc ;
SPFLOATout ;
SPFLOATpos ;
SPFLOATdiameter ;
SPFLOATnasal ;
SPFLOATin ;
switch (pd⃗mode) {
case PLUMBER_CREATE:

sp voc create (&voc);
∗ud = voc ;
if (sporth check args (stack , "ffff") ̸= SPORTH_OK) {

plumber print (pd , "Voc:␣not␣enough␣arguments!\n");
}
nasal = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
in = sporth stack pop float (stack);
sporth stack push float (stack , 0.0);
break;

case PLUMBER_INIT:
voc = ∗ud ;
sp voc init (pd⃗sp , voc);
nasal = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
in = sporth stack pop float (stack);
sporth stack push float (stack , 0.0);
break;

case PLUMBER_COMPUTE:
voc = ∗ud ;
nasal = sporth stack pop float (stack);
diameter = sporth stack pop float (stack);
pos = sporth stack pop float (stack);
in = sporth stack pop float (stack);
if (sp voc get counter (voc) ≡ 0) {

sp voc set velum (voc , 0.01 + 0.8 ∗ nasal);
sp voc set tongue shape (voc , 12 + 16.0 ∗ pos , diameter ∗ 3.5);

}
sp voc tract compute (pd⃗sp , voc ,&in ,&out);
sporth stack push float (stack , out);
break;

case PLUMBER_DESTROY:
voc = ∗ud ;
sp voc destroy (&voc);
break;

46 EXTERNAL SPORTH PLUGINS VOC §76

}
return PLUMBER_OK;

}
#endif

77.

A multi ugen plugin implementation
New Sporth developments contemporary with the creation of Voc have lead to the development of Sporth

plugins with multiple ugens.

⟨ ugen.c 70 ⟩ +≡
#ifdef BUILD_SPORTH_PLUGIN

static const plumber dyn funcsporth functions [] = {sporth voc , sporth tract , };
int sporth return ugen multi (int n, plumber dyn func ∗ f)
{
if (n < 0 ∨ n > 1) {

return PLUMBER_NOTOK;
}
∗f = sporth functions [n];
return PLUMBER_OK;

}
#endif

§78 VOC SPORTH CODE EXAMPLES 47

Sporth Code Examples (78)

Here are some sporth code examples.

Chant

voc ”./voc.so” fl

36 0.3 1 4 jitter + mtof

0.1 1 sine 0 1 biscale
0.9
0.9
0.3 1 sine 0 1 biscale
voc fe 36 mtof 70 5 eqfil

dup dup 0.97 10000 revsc drop −14 ampdb ∗ dcblk +

voc fc

Rant

It kind of sounds like an angry rant

voc "./voc.so" fl

100
8 metro 0.3 maygate 200 ∗ + 0.1 port
30 1 10 jitter +

0 1 3 randi
0 1 3 20 1 randi randi
0.7
0
voc
voc fe

1 metro 0.7 maygate 0.03 port ∗
dup dup 1 2 8000 zrev drop −10 ampdb ∗ +

voc fc

Unya

voc ”./voc.so” fl
rate var
seq ”0 2 4 7 9 11 12” gen vals

15 inv 1 sine 0.3 3 biscale rate set

rate get metro 1 seq tseq 48 + 5 6 1 randi 1 sine 0.3 ∗ + mtof

rate get metro 0.1 0.01 0.1 tenv 0.0 0.3 scale
rate get metro 0.1 0.1 0.3 tenv 0.0 rate get metro 0.3 0.9 trand scale
0.8
rate get metro tog
voc fe

dup dup 0.9 8000 revsc drop −14 ampdb ∗ dcblk +

voc fc

48 SOUNDPIPE FILES VOC §79

Soundpipe Files (79)

This section here outlines files specifically needed to fulfill the Soundpipe the requirements for being a
Soundpipe module.
The components of a fully implemented Soundpipe module consist of the following:

• The core callback code implementing create, destroy, initialize, and compute functions (the core of this
document)

• An accompanying header file for the core code (see $ (voc .h)
• An example file, showcase a simple usecase for the module in a small C program, using the namespace
convenction ex FOO.c.

• A metadata file in the form of a Lua table. This file is mainly used to generate documentation for
Soundpipe, but it is also used to generate Sporth ugen code.

• A soundpipe test file, using the namespace t FOO.c. This file gets included with Soundpipe’s internal test
utility, which implements a form of unit testing for DSP code.

• A soundpipe performance file, using the namespce p FOO.c. This file get inslucded with Soundpipe’s
internal performance utiltity, used to gauge how computationally expensive a given Soundpipe module is.

A small C Example
Each soundpipe module comes with a small example file showcasing how to use a module. This one utilizes

the macro tongue control outlined in ⟨Voc Set Tongue Shape 26 ⟩ to shape the vowel formants. In this case,
a single LFO is modulating the tract position.
In addition to providing some example code, these short programs often come in handy with debugging

programs like GDB and Valgrind.

⟨ ex_voc.c 79 ⟩ ≡
#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include "soundpipe.h"

typedef struct {
sp voc ∗voc ;
sp osc ∗ osc ;
sp ftbl ∗ ft ;

} UserData;

void process (sp data ∗ sp ,void ∗udata)
{
UserData ∗ud = udata ;

SPFLOATosc = 0, voc = 0;
sp osc compute (sp , ud⃗osc ,Λ,&osc);
if (sp voc get counter (ud⃗voc) ≡ 0) {
osc = 12 + 16 ∗ (0.5 ∗ (osc + 1));
sp voc set tongue shape (ud⃗voc , osc , 2.9);

}
sp voc compute (sp , ud⃗voc ,&voc);
sp⃗ out [0] = voc ;

}
int main ()
{
UserData ud ;

sp data ∗ sp ;
sp create (&sp);

§79 VOC SOUNDPIPE FILES 49

sp srand (sp , 1234567);
sp voc create (&ud .voc);
sp osc create (&ud .osc);
sp ftbl create (sp ,&ud .ft , 2048);
sp voc init (sp , ud .voc);
sp gen sine (sp , ud .ft);
sp osc init (sp , ud .osc , ud .ft , 0);
ud .osc⃗ amp = 1;
ud .osc⃗ freq = 0.1;
sp⃗ len = 44100 ∗ 5;
sp process (sp ,&ud , process);
sp voc destroy (&ud .voc);
sp ftbl destroy (&ud .ft);
sp osc destroy (&ud .osc);
sp destroy (&sp);
return 0;

}
This code is cited in section 1.

50 SOUNDPIPE FILES VOC §80

80.

Soundpipe Unit Test
The prototypical soundpipe unit test will fill a buffer of memory with samples. The md5 of this buffer is

taken, and then compared with a reference md5. If they match, the signal is sample-accurately identical to
the reference and the test passes. A test that does not pass can mean any number of things went wrong,
and indicates that the module should be seriously looked at it.

⟨ t_voc.c 80 ⟩ ≡
#include "soundpipe.h"

#include "md5.h"

#include "tap.h"

#include "test.h"

typedef struct {
sp voc ∗voc ;
sp osc ∗ osc ;
sp ftbl ∗ ft ;

} UserData;

int t voc(sp test ∗ tst , sp data ∗ sp , const char ∗hash)
{
uint32 tn;

UserData ud ;
int fail = 0;

SPFLOATosc , voc ;
sp voc create (&ud .voc);
sp osc create (&ud .osc);
sp ftbl create (sp ,&ud .ft , 2048);
sp voc init (sp , ud .voc);
sp gen sine (sp , ud .ft);
sp osc init (sp , ud .osc , ud .ft , 0);
ud .osc⃗ amp = 1;
ud .osc⃗ freq = 0.1;
for (n = 0; n < tst⃗ size ; n++) { /∗ compute samples and add to test buffer ∗/
osc = 0;
voc = 0;
sp osc compute (sp , ud .osc ,Λ,&osc);
if (sp voc get counter (ud .voc) ≡ 0) {

osc = 12 + 16 ∗ (0.5 ∗ (osc + 1));
sp voc set tongue shape (ud .voc , osc , 2.9);

}
sp voc compute (sp , ud .voc ,&voc);
sp test add sample (tst , voc);

}
fail = sp test verify (tst , hash);
sp voc destroy (&ud .voc);
sp ftbl destroy (&ud .ft);
sp osc destroy (&ud .osc);
if (fail) return SP_NOT_OK;
else return SP_OK;

}
This code is cited in section 1.

§81 VOC SOUNDPIPE FILES 51

81.

Soundpipe Perfomance Test
The essence of a performance test in Soundpipe consists of running the compute function enough times so

that some significant computation time is taken up. From there it is measured using a OS timing utility like
time, and saved to a log file. The timing information from this file can be plotted against other soundpipe
module times, which can be useful to see how certain modules perform relative to others.

⟨ p_voc.c 81 ⟩ ≡
#include <stdlib.h>

#include <stdio.h>

#include "soundpipe.h"

#include "config.h"

int main ()
{
sp data ∗ sp ;
sp create (&sp);
sp srand (sp , 12345);
sp⃗ sr = SR;
sp⃗ len = sp⃗ sr ∗ LEN;
uint32 t t, u;
SPFLOATout = 0;

sp voc ∗unit [NUM];
for (u = 0; u < NUM; u++) {
sp voc create (&unit [u]);
sp voc init (sp , unit [u]);

}
for (t = 0; t < sp⃗ len ; t++) {
for (u = 0; u < NUM; u++) sp voc compute (sp , unit [u],&out);

}
for (u = 0; u < NUM; u++) sp voc destroy (&unit [u]);
sp destroy (&sp);
return 0;

}
This code is cited in section 1.

52 REFERENCES VOC §82

References (82)

[1] Gunnar Fant. The voice source in connected speech. Speech communication, 22(2-3):125–139, 1997.

[2] Donald Ervin Knuth. Literate programming. Center for the Study of Language and Information Stanford,
1992.

[3] Donald Ervin Knuth and Silvio Levy. The CWEB system of structured documentation: version 3.0.
Addison-Wesley Longman Publishing Co., Inc., 1994.

[4] Hui-Ling Lu and Julius O Smith III. Glottal source modeling for singing voice synthesis. In ICMC, 2000.

[5] Jack Mullen. Physical modelling of the vocal tract with the 2D digital waveguide mesh. University of
York, 2006.

[6] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory to implemen-
tation. Morgan Kaufmann, 2016.

[7] Neil Thapen. Pink Trombone. https://dood.al/pinktrombone/. Accessed: 04-19-2017.

	Overview
	Header Inclusion, Structs, and Macros
	Top-level Functions
	The Glottis
	The Vocal Tract
	Header File
	Small Applications and Examples
	External Sporth Plugins
	Sporth Code Examples
	Soundpipe Files
	References

